JOURNAL OF APPROXIMATION THEORY 4, 328-331 (1971)

A Best Two-Dimensional Space of Approximating Functions, II

ROBERT FEINERMAN*

Hebrew University of Jerusalem, Jerusalem, Israel and Harvard University, Cambridge, Mass.

Communicated by Oved Shisha

Received February 2, 1970

Assume $\omega(x)$ is a given modulus of continuity, i.e., $\omega(x)$ is defined on $[0, \infty)$ and satisfies

- (1) $\lim_{x\to 0+0} \omega(x) = \omega(0) = 0.$
- (2) If $0 \leq x_1 < x_2$, then $0 \leq \omega(x_2) \omega(x_1) \leq \omega(x_2 x_1)$.

Let (M, ρ) be a given compact metric space and let $\wedge_{\omega} (M, \rho)$ be the set of all real-valued f(x) defined on M such that $|f(x) - f(y)| \leq \omega(\rho(x, y))$ for all $x, y \in M$.

In [1] we dealt with best 2-dimensional approximating spaces to $\wedge_1(M, \rho)$ which is $\wedge_{\omega}(M, \rho)$ for $\omega(x) = x$. In reviewing the methods used there, we found that they could be used to obtain similar results for $\wedge_{\omega}(M, \rho)$ for any $\omega(x)$. However, we propose to show here how to get these results from those proved for $\wedge_1(M, \rho)$. We shall also obtain a result which we were unable to prove by the last mentioned method, one which characterizes a best 2-dimensional approximating space to $\wedge_{\omega}(M, \rho)$ for all $\omega(x)$.

Notation. (1) If $g_1(x)$ and $g_2(x)$ are any real functions on M, then $E_{\wedge_{\omega}(M,\rho)}(g_1, g_2) = \sup_{f \in \wedge_{\omega}(M,\rho)} \inf_{a,b} ||f - ag_1 - bg_2||$ where || || is the sup norm.

(2) $E_2(\Lambda_{\omega}(M,\rho)) = \inf_{g_1,g_2} E_{\Lambda_{\omega}(M,\rho)}(g_1,g_2).$

(3) If $T \subseteq M$, then T' is its complement, $d_{\rho}(T) = \sup_{x,y \in T} \rho(x, y)$ is its ρ -diameter and T(x) is its characteristic function, i.e.,

$$T(x) = \begin{cases} 1, & \text{if } x \in T, \\ 0, & \text{if } x \notin T. \end{cases}$$

Using this notation, the main theorems of [1] can be restated as follows:

THEOREM A. There is a $T \subseteq M$ such that $E_{\wedge_1(M,\rho)}(T,T') = E_2(\wedge_1(M,\rho))$.

* Partially supported by the United States Army Research Office (Durham).

THEOREM B. Let $T \subseteq M$. Then $E_{\wedge_1(M,\rho)}(T, T') = \frac{1}{2} \max(d_{\rho}(T), d_{\rho}(T'))$. In this article we generalize these results.

LEMMA. If $\omega(x) \neq 0$, then $\omega \rho$ is a metric on M, where $\omega \rho(x, y) = \omega(\rho(x, y))$. *Proof.* (1) $\omega \rho(x, y) \ge 0$,

- (2) $\omega \rho(x, y) = 0$ iff x = y,
- (3) $\omega \rho(x, y) = \omega \rho(y, x)$,
- (4) $\omega \rho(x, z) \leq \omega \rho(x, y) + \omega \rho(y, z).$

Parts (1) and (3) are trivial. As to part (4), we have

$$egin{aligned} &\omega
ho(x,z)=\omega(
ho(x,z))\leqslant\omega(
ho(x,y)+
ho(y,z))\leqslant\omega(
ho(x,y))+\omega(
ho(y,z))\ &=\omega
ho(x,y)+\omega
ho(y,z). \end{aligned}$$

For part (2), if x = y, then trivially $\omega \rho(x, y) = 0$. If, however, $\omega \rho(x, y) = 0$ and $x \neq y$, then since ρ is a metric, $\rho(x, y) \neq 0$. Thus there is a $\delta > 0$ such that $\omega(\delta) = 0$. Since $\omega(x)$ is nondecreasing, $\omega(x) = 0$ for $x \in [0, \delta]$. For $x \in [\delta, 2\delta]$, $\omega(x) \leq 2\omega(x/2) = 0$. Thus, $\omega(x) = 0$ for $x \in [0, 2\delta]$. Continuing in this manner, we end up with $\omega(x) \equiv 0$, contradicting our hypothesis.

We note that if $\omega(x) \not\equiv 0$ and $T \subseteq M$, then $d_{\omega\rho}(T) = \omega(d_{\rho}(T))$.

We also note that if $\omega(x) \equiv 0$, then $\Lambda_{\omega}(M, \rho)$ is the set of all real-valued constant functions on M.

THEOREM 1. There is a $T_{\omega} \subseteq M$ such that

$$E_{\wedge \omega(M,\rho)}(T_{\omega}, T_{\omega}') = E_{2}(\wedge_{\omega}(M, \rho)),$$

i.e., characteristic functions constitute a best approximating class.

Proof. If $\omega(x) \equiv 0$, then both sides of the equality are zero for any $T \subseteq M$ since $\Lambda_{\omega}(M, \rho)$ is one-dimensional (hence $E_2(\Lambda_{\omega}(M, \rho)) = 0$) and spanned by the constant function (hence $E_{\Lambda_{\omega}(M,\rho)}(T, T') = 0$).

If $\omega(x) \neq 0$, then $\omega \rho$ is a metric on M and by its definition it is obvious that $f \in \Lambda_{\omega}(M, \rho)$ iff $f \in \Lambda_1(M, \omega \rho)$. Thus $\Lambda_{\omega}(M, \rho) = \Lambda_1(M, \omega \rho)$, $E_2(\Lambda_{\omega}(M, \rho)) = E_2(\Lambda_1(M, \omega \rho))$ and $E_{\Lambda_{\omega}(M,\rho)}(g_1, g_2) = E_{\Lambda_1(M, \omega \rho)}(g_1, g_2)$ for any $g_1(x)$ and $g_2(x)$. From [1] we know that there is a $T_{\omega} \subseteq M$ such that

$$E_{\wedge_1(M,\omega\rho)}(T_{\omega}, T_{\omega}') = E_2(\wedge_1(M, \omega\rho)).$$

Thus

$$E_{\wedge_{\omega}(M,\rho)}(T_{\omega}, T_{\omega}') = E_2(\wedge_{\omega}(M, \rho)).$$

FEINERMAN

THEOREM 2. If $T \subseteq M$, $E_{\wedge_{\omega}(M,\rho)}(T, T') = \frac{1}{2}\omega(\max(d_{\rho}(T), d_{\rho}(T'))).$

Proof. Again, if $\omega(x) \equiv 0$, both sides are zero. If $\omega(x) \neq 0$,

$$E_{\wedge_{\omega}(\mathcal{M},\rho)}(T,T')=E_{\wedge_{1}(\mathcal{M},\omega\rho)}(T,T').$$

However, by [1],

$$\begin{split} E_{\wedge_1(\mathcal{M},\omega\rho)}(T,T') &= \frac{1}{2} \max(d_{\omega\rho}(T),d_{\omega\rho}(T')) \\ &= \frac{1}{2} \max(\omega(d_{\rho}(T)),\omega(d_{\rho}(T'))) \\ &= \frac{1}{2} \omega(\max(d_{\rho}(T),d_{\rho}(T'))). \end{split}$$

With these two theorems, we have generalized Theorems A and B. We have proved that characteristic functions form a best approximating space and we have also found out how to calculate the error. The next theorem relates this error to the one for $\omega(x) = x$.

THEOREM 3. $E_2(\wedge_{\omega}(M, \rho)) = \frac{1}{2}\omega(2E_2(\wedge_1(M, \rho))).$

Proof. Since, for $T \subseteq M$, $\max(d_{\rho}(T), d_{\rho}(T')) = 2E_{\wedge_1(M,\rho)}(T, T')$, Theorem 2 can be restated as $E_{\wedge_{\omega}(M,\rho)}(T, T') = \frac{1}{2}\omega(2E_{\wedge_1(M,\rho)}(T, T'))$. However, from Theorem 1 we have that

$$E_{2}(\Lambda_{\omega}(M,\rho)) = \inf_{T \subseteq M} E_{\Lambda_{\omega}(M,\rho)}(T,T').$$

Thus

$$\begin{split} E_2(\wedge_{\omega}(M,\rho)) &= \inf_{T \subset \mathcal{M}} \left(\frac{1}{2} \omega (2E_{\wedge_1(M,\rho)}(T,T')) \right) \\ &= \frac{1}{2} \omega (\inf_{T \subset \mathcal{M}} \left(2E_{\wedge_1(M,\rho)}(T,T') \right) \right) \\ &= \frac{1}{2} \omega (2E_2(\wedge_1(M,\rho))). \end{split}$$

Our next theorem states that, in Theorem 1, we can choose the $T \subseteq M$ independently of $\omega(x)$.

THEOREM 4. There is a $T \subseteq M$ such that, for any modulus of continuity $\omega(x)$,

$$E_{\wedge \omega(M,\rho)}(T,T') = E_2(\wedge_{\omega}(M,\rho)).$$

Proof. Let $T \subseteq M$ be chosen such that $E_{\wedge_1(M,\rho)}(T, T') = E_2(\wedge_1(M, \rho))$.

Then

$$E_{2}(\Lambda_{\omega}(M,\rho)) = \frac{1}{2}\omega(2E_{2}(\Lambda_{1}(M,\rho)))$$
$$= \frac{1}{2}\omega(2E_{\Lambda_{1}(M,\rho)}(T,T'))$$
$$= \frac{1}{2}\omega(\max(d_{\rho}(T),d_{\rho}(T')))$$
$$= E_{\Lambda_{\omega}(M,\rho)}(T,T').$$

Reference

1. R. FEINERMAN, A Best Two-Dimensional Space of Approximating Functions, J. Approximation Theory 3 (1970), 50-58.